An index theorem for quotients of Bergman spaces on egg domains

نویسندگان

چکیده

In this paper we prove a $K$-homology index theorem for the Toeplitz operators obtained from multishifts of Bergman space on several classes egg-like domains. This generalizes our with Douglas and Yu unit ball.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gleason’s Problem in Weighted Bergman Space on Egg Domains

In the paper, we discuss on the egg domains: Ω a = ξ = (z, w) ∈ C n+m : z ∈ C n , w ∈ C m , |z| 2 + |w| 2/a < 1 , 0 < a ≤ 2. We show that Gleason's problem can be solved in the weight Bergman space on the egg domains. The proof will need the help of the recent work of the second named author on the weighted Bergman projections on this kind of domain. As an application, we obtain a multiplier th...

متن کامل

Invariant Subspaces of Bergman Spaces on Slit Domains

In this paper, we characterize the z-invariant subspaces that lie between the Bergman spaces A(G) and A(G\K), where 1 < p <∞, G is a bounded region in C, and K is a closed subset of a simple, compact, C arc.

متن کامل

Double Integral Characterization for Bergman Spaces

&lrm;In this paper we characterize Bergman spaces with&lrm; &lrm;respect to double integral of the functions $|f(z)&lrm; &lrm;-f(w)|/|z-w|$,&lrm; &lrm;$|f(z)&lrm; -&lrm;f(w)|/rho(z,w)$ and $|f(z)&lrm; &lrm;-f(w)|/beta(z,w)$,&lrm; &lrm;where $rho$ and $beta$ are the pseudo-hyperbolic and hyperbolic metrics&lrm;. &lrm;We prove some necessary and sufficient conditions that implies a function to be...

متن کامل

Compact Operators on Bergman Spaces

We prove that a bounded operator S on La for p > 1 is compact if and only if the Berezin transform of S vanishes on the boundary of the unit disk if S satisfies some integrable conditions. Some estimates about the norm and essential norm of Toeplitz operators with symbols in BT are obtained.

متن کامل

A Morse Index Theorem for Elliptic Operators on Bounded Domains

We consider a second-order, selfadjoint elliptic operator L on a smooth one-parameter family of domains {Ωt}t∈[a,b] with no assumptions on the geometry of the Ωt’s. It is shown that the Morse index of L can be equated with the Maslov index of an appropriately defined path in a symplectic Hilbert space constructed on the boundary of Ωb. Our result is valid for a wide variety of boundary conditio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of K-theory

سال: 2021

ISSN: ['2379-1691', '2379-1683']

DOI: https://doi.org/10.2140/akt.2021.6.357